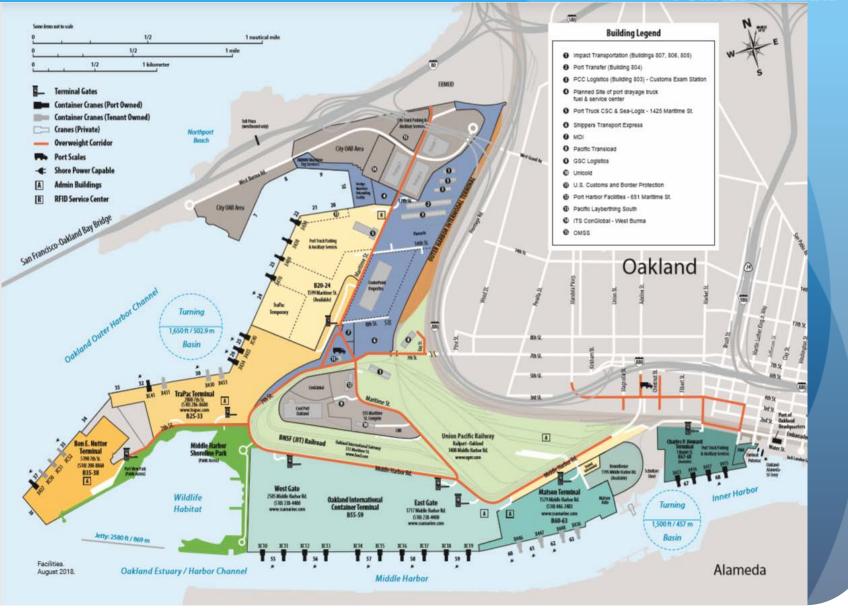
Port of Oakland Sea Level Rise Assessment

Storms, Flooding, and Sea Level Defense Conference


December 3, 2019

the part of the second second second second

Port of Oakland 101



- Top 10 highest volume container port in U.S.
- 12th busiest cargo airport in the U.S.
- 33rd busiest passenger airport in the U.S.
- 20 miles of waterfront (maritime, aviation and real estate), utilities, public parks and habitat

Maritime Area

PORT OF OAKLAND

Collaborative Efforts to Date PORT OF OAKLAND

- Oakland/Alameda Focus Areas Shoreline Resilience Study, 2016
- Oakland Local Hazard Mitigation Plan, 2016
- Oakland Sea Level Rise Road Map, 2017
- Middle Harbor Enhancement Project, 2018
- Preliminary National Flood Insurance Rate Maps, effective 2018
- Resilient By Design, 2017-18
- Adapting to Rising Tides (BCDC), Ongoing

AB691 SLR Adaptation Report

Port of Oakland Completed:

- Impact of SLR on public trust lands
- Maps showing SLR (and storm surge) for 2030, 2050, and 2100
- Financial cost of SLR (cost of inaction and action)
- Plan to protect and preserve natural and manmade resources
- Collaboration with stakeholders

Efforts to Date – Overview SLR Assessment Tasks:

Inventory

Identifies critical assets (necessary for business/ operational continuity)

- Maritime
- Commercial Real Estate
- Airport

Inventory includes

- Utilities
- Facilities
- Transportation
- Natural Habitats
- Community Assets

Inventory based on

- PortView
- Port staff input

ssessment of SLR Impacts: Inventory

Estimation of Financial Costs
Development of Adaptation Strategies

SLR Assessment Plan

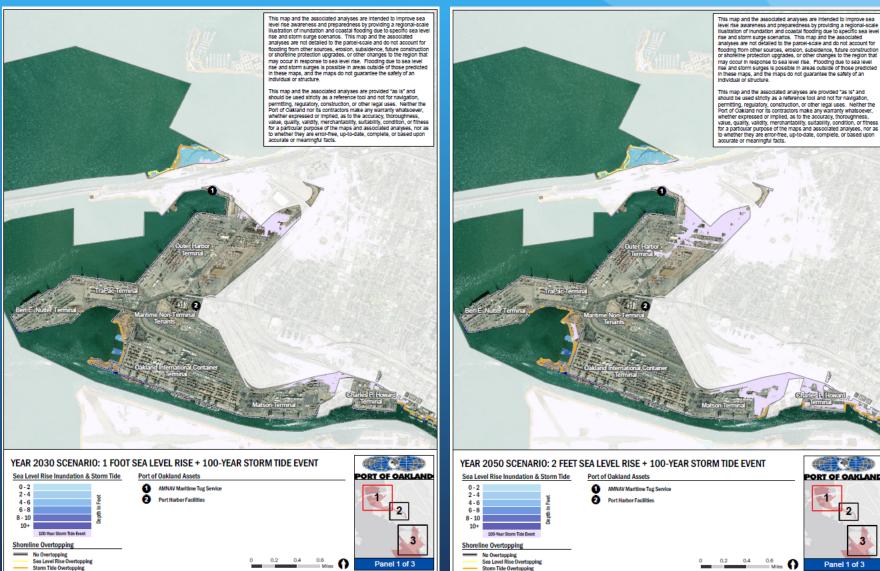
Assessment of SLR Impacts: Vulnerability Assessment

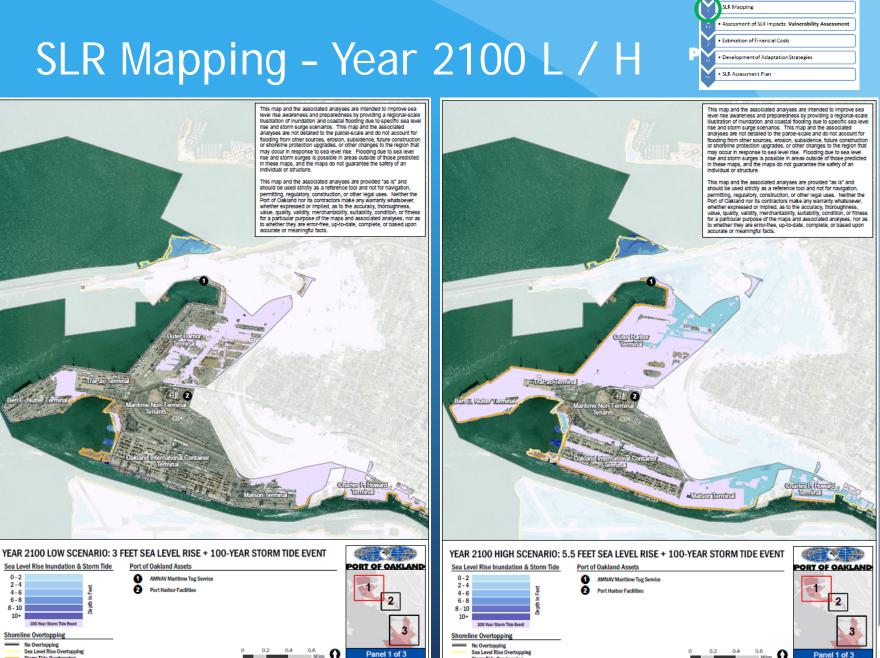
SLR Mapping

SLR Mapping

SLR Scenarios

Year	Inundation Maps (MHHW)		State of
2030	1 ft. SLR	1 ft. SLR + 100-yr Storm Tide (ST)	State of California Sea-Level
2050	2 ft. SLR	2 ft. SLR + 100-yr ST	Rise Guidan
2100	3 ft. SLR 5.5 ft. SLR	3 ft. SLR + 100-yr ST 5.5 ft. SLR + 100-yr ST	


8


се

SLR Mapping - Year 2030 / 2050

	14	Assessment of SLR Impacts: Inventory
	Y	SLR Mapping
	135	Assessment of SLR Impacts: Vulnerability Assessment
	\mathbf{Y}	Estimation of Financial Costs
P		Development of Adaptation Strategies
	\sim	SLR Assessment Plan
	-	

Maritime

Storm Tide Overtopping

Assessment of SLR Imparts: Inventory

Panel 1 of 3

Miles

Maritime

Storm Tide Overtopping

2. Vulnerability Assessment

This map and the associated analyses are intended to improve sea level rise avareness and preparedness by providing a regional-scale illustration of inundation and coastal flooding due to specific sea level rise and storm surge scenarios. This map and the associated analyses are not detailed to the pareti-scale and do not account for flooding from other sources, ension, subsidence, future construction or shoreline protection upgrades, or other changes to the region that may occur in response to sea level rise. Flooding due to sea level rise and storm surges is possible in areas outside of those predicted in these maps, and the maps do not guarantee the safety of an individual or structure.

This map and the associated analyses are provided "as is" and should be used strictly as a reference tool and not for navigation, permitting, regulatory, construction, or other legal uses. Neither the Port of Oakland nor its contractors make any warrantly whatsoew; whether expressed or implied, as to the accuracy, thoroughness, value, quality, validity, merchantability, suitability, condition, or fitness for a particular purpose of the maps and associated analyses, nor as to whether they are error-free, up-to-date, complete, or based upon accurate or meaningful facts.

By year 2030 (1 foot SLR)

• Flooding at NE and SE corners of property

Temporary Flooding (100-year ST)

- Portions of rail
- Maritime Non-Terminal Tenant Area
- Substation



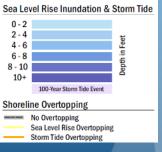

Adaptation Strategies: M.1 Middle Harbor Shoreline Park

Adaptation Strategies: New Terminal Shorelines

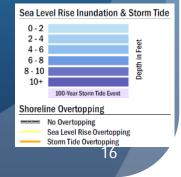
teet SLR

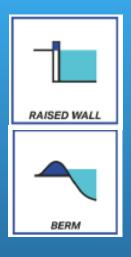
Length : ~1700 feet

Length : ~1200 feet


14

Adaptation Strategies: M.3 All Maritime Terminals


Adaptation Strategies: M.4 Matson Terminal and Northern Maritime Non-Terminal Tenant Area


SD26

- Between 3 and 5.5 feet Mapped SLR Scenarios (4 feet SLR)
- Existing backflow prevention (in progress)

Adaptation Strategies: M.5 South Side of Bay Bridge Touchdown

Length : ~3550 feet

Length : ~7300 feet

- Collaboration outside of Port property
- Gateway Park

Other SLR Efforts

Oakland Airport Specific Efforts

- Oakland Airport Perimeter Dike Improvement, ongoing
- Airport Northfield Flood Protection Study, ongoing

Thank You

